CONTENTS

Signed Number	3-4
Integers	
Introduction	5
Addition	
Subtraction	11-15
Mixed Practice	16
Multiplication	
Mixed Practice	
Division	
Mixed Practice	
Rational Numbers	
Introduction	22
Addition	
Subtraction	
Multiplication	
Division	
Mixed Practice	
Wilked Fractice	37-36
Exponents	
Introduction	
Evaluating	40-41
Powers of Ten	
Multiplication and Division	
Negative Exponents	44
Exponential Expressions	45-54
Square Numbers	
Introduction	55
Square Roots	

If you have played a game and had an "in the hole" or "out of the hole" score, you have used signed numbers.

"in the hole" 12 points can be written: ¬12 ← Read: negative 12
"out of the hole" 10 points can be written: ¬10 or 10 ← Read: positive 10 or 10

Signed numbers can be used to give temperature readings, tell how much money you have or owe, and show a gain or loss.

85° F
$$\leftarrow$$
 85 degrees above zero $\stackrel{-5}{-}$ You owe \$5. $\stackrel{+2\frac{3}{4}}{\leftarrow}$ gain of $2\frac{3}{4}$ points $\stackrel{-1}{-}$ 18 degrees below zero $\stackrel{+5}{-}$ or 5 $\stackrel{+}{\leftarrow}$ You have \$5. $\stackrel{-1\frac{1}{2}}{\leftarrow}$ loss of $1\frac{1}{2}$ points

Signed numbers show direction.

The *number* tells how much or how many. The *sign* tells the direction from zero.

Zero is not considered positive or negative.

Write a signed number to represent each of the following:

- 1. a gain of 18 points
- 2. a loss of 6 yards in a football play
- **3.** a loss of \$6.75 _____
- **4.** a profit of \$15.75 _____
- **5.** 1.5 minutes after blastoff _____
- 6. 25 seconds before blastoff _____
- 7. an elevation of 1000 feet _____

8. a submarine 100 feet below

- sea level _____
- **9.** 6.5 centimeters above the ground _____

10. 1.2 meters below the surface of

the water _____

11. a loss of $\frac{3}{4}$ dollars on a share

of stock _____

12. a gain of $1\frac{7}{8}$ dollars on a share

of stock _____

13. a deposit to a bank account

of \$28.35 _____

14. a withdrawal of \$98.75 from a

bank account _____

You can graph signed numbers on a number line. The number line extends to the left and to the right of 0.

A pair of numbers, such as -5 and 5, that are the same distance from zero but in opposite directions are called **opposites**.

The **absolute value** of a number is its distance from 0.

The symbol for the absolute value of ⁻² is l⁻²l. ← Read: the absolute value of ² The distance of -2 and 2 from 0 are the same. So -2 and 2 have the same absolute value. |-2| = 2|2| = 2

Graph these numbers on the line below.

1. -3

2. ⁻1

3. $-2\frac{1}{4}$ **4.** -2.5 **5.** $-5\frac{1}{2}$ **6.** $\frac{1}{2}$

Write the opposite of each number.

7. -6 ____ **8**. 4 ___ **9**. -10 ___ **10**. -7 ___ **11**. 3 ___ **12**. -1 ___

Give the absolute value of each number.

13. |-9| ____ **14.** |8| ___ **15.** |-8| ___ **16.** |3| ___ **17.** |6| ___ **18.** |-12|

Name two numbers that are these distances from zero.

19. 4 units _____ and ____

20. 7 units and

The positive whole numbers (1, 2, 3, ...), negative whole numbers (-1, -2, -3, ...), and 0 make up the set of numbers called **integers**.

You can compare and order integers by looking at their position on a number line. The integer to the left on the number line is the lesser integer. The integer to the right is the greater integer.

Examples:

-5 is to the left of -2 so -5 is less than -2

-5 < -2 is less than

3 is to the right of $^{-1}$ so 3 is greater than $^{-1}$

3 > 1 is greater than

-4, 1, -6, 0 in order from least to greatest: -6, -4, 0, 1

Compare. Write < or >.

2. -6
$$\square$$
 -8

12. -10
$$\square$$
 -9

Write in order from least to greatest.

You can use a number line to "add" integers. Start at zero. Move to the left for negative numbers and to the right for positive numbers.

A robot moves 6 units to the left and then 7 units to the right.

Where is the robot now?

The robot is at 1.

 $^{-}6 + 7 = 1$

A robot moves 5 units to the left and then 2 more units to the left. Where is the robot now?

Move left 5, then left 2.

The robot is at -7.

 $^{-}5 + ^{-}2 = ^{-}7$

A robot moves 6 units to the right and then 9 units to the left. Where is the robot now?

 $6 + ^{-}9 = \underline{?}$ Move right 6, then left 9.

The robot is at -3.

 $6 + ^{-}9 = ^{-}3$

A robot moves 3 units to the right and then 4 more units to the right. Where is the robot now?

3 + 4 = <u>?</u>

Move right 3, then right 4.

The robot is at 7.

3 + 4 = 7

